

Selected instrumentation:

- Interplanetary space: Particles instruments

CIS on Cluster-1, Equator-S, Cluster-2 & DoubleStar

Cluster Fleet

Cis-1 / Esic

amdlspace@gmail.com

Cis-2

2

CIS-2

Cis-2 / HIA Qudrispherical analyzer concept

Cis-2 Recovered after the Ariane 5 first flight

CIS 3D-Distributions reconstruction

$$CR = \int_{\vartheta=-\pi/2}^{\vartheta=\pi/2} \int_{\phi=0}^{\phi=2\pi} \int_{v=-\infty}^{v=\infty} T(\theta, \phi, v) \vec{\mathbf{S}} \cdot \vec{\mathbf{v}} f(\vec{\mathbf{v}}) v^2 \cos \vartheta d \vartheta d \phi dv$$

$$f(v_0) = (v_0^4 K)^{-1} CR$$

CIS On-board Momenta computation - 1 of 2

Density:

 $n = \iiint f(\vartheta, \varphi, v) v^{2} \cos \theta d \vartheta d \varphi dv$ $n = \Delta \theta \Delta \phi / K \sum_{v_{i}} \frac{\Delta v_{i}}{\langle v_{i}^{2} \rangle} \sum_{\varphi j} \sum_{\vartheta k} \langle \cos \vartheta_{k} \rangle CR_{ijk}$

Bulk Velocity:

$$\begin{split} V_{x} &= \frac{1}{n} \iiint f(\vartheta, \varphi, v) v^{3} \cos^{2} \theta \cos \varphi d \vartheta d \varphi d v \\ V_{y} &= \frac{1}{n} \iiint f(\vartheta, \varphi, v) v^{3} \cos^{2} \theta \sin \varphi d \vartheta d \varphi d v \\ V_{z} &= \frac{1}{n} \iiint f(\vartheta, \varphi, v) v^{3} \cos \theta \sin \vartheta d \vartheta d \varphi d v \\ V_{z} &= \Delta \theta \Delta \phi / n K \sum_{vi} \frac{\Delta v_{i}}{\langle v_{vi} \rangle} \sum_{\varphi j} \langle \cos \varphi_{j} \rangle \sum_{\Re} \langle \cos^{2} \vartheta_{k} \rangle CR_{ijk} \\ V_{y} &= \Delta \theta \Delta \phi / n K \sum_{vi} \frac{\Delta v_{i}}{\langle v_{vi} \rangle} \sum_{\varphi j} \langle \sin \varphi_{j} \rangle \sum_{\Re} \langle \cos^{2} \vartheta_{k} \rangle CR_{ijk} \\ V_{z} &= \Delta \theta \Delta \phi / n K \sum_{vi} \frac{\Delta v_{i}}{\langle v_{vi} \rangle} \sum_{\varphi j} \langle \sin \varphi_{j} \rangle \sum_{\Re} \langle \cos \vartheta_{j} \cos \vartheta_{k} \rangle CR_{ijk} \end{split}$$

CIS On-board Momenta computation - 2 of 2

Pressure Tensor:

$$\begin{split} P_{xx} &= m_p \iiint f(\vartheta, \varphi, v) v^4 \cos^3 \theta \cos^2 \varphi \, d \, \vartheta \, d \, \varphi \, dv \\ P_{xy} &= m_p \iiint f(\vartheta, \varphi, v) v^4 \cos^3 \theta \sin \phi \cos \varphi \, d \, \vartheta \, d \, \varphi \, dv \\ P_{xz} &= m_p \iiint f(\vartheta, \varphi, v) v^4 \cos^2 \theta \sin \theta \cos \varphi \, d \, \vartheta \, d \, \varphi \, dv \\ P_{yy} &= m_p \iiint f(\vartheta, \varphi, v) v^4 \cos^3 \theta \sin^2 \varphi \, d \, \vartheta \, d \, \varphi \, dv \\ P_{yz} &= m_p \iiint f(\vartheta, \varphi, v) v^4 \cos^2 \theta \sin \theta \sin \varphi \, d \, \vartheta \, d \, \varphi \, dv \\ P_{zz} &= m_p \iiint f(\vartheta, \varphi, v) v^4 \cos^2 \theta \sin \theta \sin \varphi \, d \, \vartheta \, d \, \varphi \, dv \\ \end{split}$$

$$\begin{split} P_{xx} &= \Delta \theta \Delta \phi \operatorname{m}_{p} / \mathrm{K} \sum_{\mathrm{vi}} \Delta \operatorname{v}_{i} \sum_{\varphi j} < \cos^{2} \varphi_{j} > \sum_{\mathscr{K}} < \cos^{3} \vartheta_{k} > \mathrm{CR}_{ijk} \\ P_{xy} &= \Delta \theta \Delta \phi \operatorname{m}_{p} / \mathrm{K} \sum_{\mathrm{vi}} \Delta \operatorname{v}_{i} \sum_{\varphi j} < \sin \varphi_{j} \cos \varphi_{j} > \sum_{\mathscr{K}} < \cos^{3} \vartheta_{k} > \mathrm{CR}_{ijk} \\ P_{xz} &= \Delta \theta \Delta \phi \operatorname{m}_{p} / \mathrm{K} \sum_{\mathrm{vi}} \Delta \operatorname{v}_{i} \sum_{\varphi j} < \cos \varphi_{j} > \sum_{\mathscr{K}} < \cos^{2} \vartheta_{k} \sin \vartheta_{k} > \mathrm{CR}_{ijk} \\ P_{yy} &= \Delta \theta \Delta \phi \operatorname{m}_{p} / \mathrm{K} \sum_{\mathrm{vi}} \Delta \operatorname{v}_{i} \sum_{\varphi j} < \sin^{2} \varphi_{j} > \sum_{\mathscr{K}} < \cos^{3} \vartheta_{k} > \mathrm{CR}_{ijk} \\ P_{yz} &= \Delta \theta \Delta \phi \operatorname{m}_{p} / \mathrm{K} \sum_{\mathrm{vi}} \Delta \operatorname{v}_{i} \sum_{\varphi j} < \sin^{2} \varphi_{j} > \sum_{\mathscr{K}} < \cos^{3} \vartheta_{k} > \mathrm{CR}_{ijk} \\ P_{zz} &= \Delta \theta \Delta \phi \operatorname{m}_{p} / \mathrm{K} \sum_{\mathrm{vi}} \Delta \operatorname{v}_{i} \sum_{\varphi j} < \sin \varphi_{j} > \sum_{\mathscr{K}} < \cos^{2} \vartheta_{k} \sin \vartheta_{k} > \mathrm{CR}_{ijk} \\ P_{zz} &= \Delta \theta \Delta \phi \operatorname{m}_{p} / \mathrm{K} \sum_{\mathrm{vi}} \Delta \operatorname{v}_{i} \sum_{\varphi j} < \sin \varphi_{j} > \sum_{\mathscr{K}} < \cos^{2} \vartheta_{k} \sin \vartheta_{k} > \mathrm{CR}_{ijk} \end{split}$$

amdlspace@gmail.com

CIS-2, ESIC: On board S/W, Cis-1 Compression

- Solar Wind / Backstreaming ions operations
- Magnetospheric and Calibration operations
- TLM activity 16 Modes * 7 TLM regimes i.e.112 modes
- Products formatting Routines
- Cold /Hot ion populations momenta computation
- 3D on board compression
- Beam tracking
- Automatic mode switching
- Spin accumulated samples
- Spin tagging
- Magnetic field handling for PAD slices sampling
- Burst (scratch memory) activity
- Azimuthal coverage

CIS-2 On-Board S/W validation facility

Ground testing S/W

S/W developed for detectors Beams emulator facility

On-Bord S/W validation

Workstation computation Vs On-Board computations extracted from TLM

ELENA

The Neutral Particle Analyzer for BepiColombo

Breaking the limits for low energy high angular resolution neutral atom detection by means of micro-shuttering techniques

amdlspace@gmail.com

ELENA shuttering concept: the theory

G Wilhemi and F. Gompf, Nucl. Instrum Methods 81, 36 (1970)

Binary sequences and error analysis for pseudo statistical neutron modulators with different duty cycles.

A. Brock, N. Rodriguez, and R.N. Zare, Rev. of Sci. Inst., 71, 1306-1318 (2000)

Characterization of a Hadamard Time-of-Flight spectrometer.

(Courtesy from Space Nat. Laboratories - MIT) Scanning-electron micrograph of a deep-UV blocking grating used in atom telescopes on the NASA IMAGE and TWINS missions. The grating blocks deep-UV radiation while passing energetic neutral atoms. Due to the narrow slot width of 45 nm and the large slot depth (~500 nm), the UV transmission is extremely low (~10^-6 at lambda =121.6 nm), while decreasing the transmitted atomic flux by only a factor of 10.

(*Courtesy from Space Nat. laboratories - MIT*) Scanning electron micrograph of a free-standing 100 nm period grid in a silicon nitride membrane of area 500 micron by 5 mm.

Resist - resolution 80 nm

Single electron devices

Zone plates -Circular difraction grating res. 50 nm

- Si wafer (300 um) covered with Si_3N_4 (2 um thick)
- resist coating and electronic lithography to define slots
- metal deposition (Cr) and lift-off
- use Cr mask to dry etch Si nitride
- suspend the membrane by wet etching of Si from backside Si_3N_4 (2um)

(a)

ELENA GRIDs IFN PROTOTYPEs

SEM images of the in line series of slots as a whole (a) and (b), and two details of a single slot (c) and (d).

SEM image of the first ELENA multi aperture slit.

IFN Nano-Grid Manufactoring

 Defined 5th generation process for implementing chromium enconding mask for motion tracking 2 inch diameter wafer. 2 μm Silicon nitride double side

Capacitive encoder reader

ELENA FPA AFE / ASIC

ELENA AFE/ASIC control

M wave - default		
File Edit View Insert Format Tools Window		
┃ 🖻 🖬 🚭 🐰 🖻 🛍 🎦 😂 🖊 🖺 🥵	🕸 🚟 🗸 🛐 🛧 EF Tooooooo 🕇 EL EX E4 79 79 🌇 🌇 📐 🖄 'L 🛨 💽 💽 1.1 Q, Q, Q, 🔍 🕼 3+ 🐔	ď
 /testbench/sys_clk /testbench/dpu_data 0101011 /testbench/dpu_adr 110101 /testbench/dpu_iordn /testbench/dpu_ioseln /testbench/dpu_ioseln /testbench/dpu_int 00 /testbench/vata_shi_inb /testbench/vata_shi_out /testbench/vata_regin /testbench/vata_regin /testbench/vata_clkin /testbench/vata_regiout /testbench/vata_regiout /testbench/vata_logu 		
	$\begin{array}{c} \text{Mask bit number:} \\ \text{Reg_out } 1 & 5 & 6 & 133 & 134 & 165 & 166 & 170 & 171 & 172 & 173 & 174 & 175 \\ \hline & & & & & & & & & & & & & & & & & &$	
Cursor 1 500 ps	the top of the boxes. Bit 0 is the first bit to be loaded. The channel numbers are indicated inside the boxes for the channel disable register and the channel threshold DAC register.	
Start 🔹 Libero IDE - D:\Act 🕅 ModelSim A	xCTEL 6 🕅 wave - default Synplify - D:\Actel 🦉 vata_test.bmp - P 🐔 elena_presentazio 🍺 Va32Ta2_2v01.pdf IT 🗸 🌀 : amdlspace@gmail.com	7:27 PM

amdlspace@gmail.com

Focal Plane position encoders (WSA)

THE ELENA FPGA

Former ELENA head core detector view

ELENA shuttering concept: the simulations

ELENA experimental activities

Outlook

• Selected instrumentation:

- Planetary surface instrumentation

MSR2003 / EXOMARS: Ma_Flux

Geochemical investigation based on X ray fluorescence of trace elements heavier than Fe. This investigation is possible with recent developments of X ray CdTe and CdZnTe detectors. Ma_Flux furnishes 2 major information:

- The content of trace elements inside (few mm to 1cm deep) the geological material

- The measurement of the sample X ray absorption : this matrix effect is a function of the sample composition (major elements)

MSR2003 / EXOMARS: Ma_Flux

ESA-INTEGRAL ISGRI Detector inheritance

Ma_FluX schematic from LABEN S.P.A.

Elements	Fluorescence range (keV)	Gamma source (400 mCi)	Measured concentration in the "Shergotty" meteorite	Sensitivity of MA_FLUX
Rb, Sr, Y, Zr, Nb	13 - 19	¹⁰⁹ Cd – 22 keV (Source #1)	150 ppm	10 ppm after 5h exposure
Ba, La, Ce, Pr, Nd, Pm, Sm	32 - 45	²⁴¹ Am – 60 keV (Source #2)	50 ppm	10 ppm after 5h exposure
Eu, Gd,Tb, Dy, Ho, Er, Tm,Yb, Lu, Hf, Ta	41 - 65	¹⁰⁹ Cd – 80 keV (Source #1)	10 ppm	10 ppm after 50 h exposure

EXOMARS Ma_FLuX source evolution

(Courtesy of Space Nat. Laboratories -MIT) Field Emitter solution.

Integrated X-Ray Generator solution •Miniature size: 15 mm dia x 10 mm •Low power: < 300 mW •Runs on standard 9 V battery •Variable end point energy: up to 35 kV •Peak x-ray flux: 10⁸ photons per second (equivalent to a 2 mCi source)

•Solid state: Pyroelectric crystal

Now on-board R-sources feasible without radioactive elements !

MSR2003 / EXOMARS MARE-Dose

Measurement reproducibility (same pill): 1 σ @ 1mGy	within 2%	
Readout signal	3000 c/µGy (DOSACUS - Rados) peak	
	at 420 nm ($\approx 5*10^3$ photons/ μ Gy)	
Annealing temperature (optimum)	≈ 240°C	
Annealing time (optimum) at 240°C	≈ 15 min	
Dimensions	4.5Øx 0.8 mm	
Weight	~ 25 mg	

MARE-Dose dual heads **DM Lab** assembly

MARE-DOSE budgets	
ITEM	

ITEM	WEIGHT (g)	POWER (mW)
	[]+Contigency	[]+Contigency
Mini Oven	120	< 6500. Only spent
		during, rising-up to
		240 °C for readout (25
		s) and reset (10 min)
Box, optics & electronics	410	1325
TOTAL	530 [640]	7825 [9400]

Dosimeters detectors and related processing **ASIC** with a self consistent CdZnTe unit for X-rays spectroscopy

Mars MSR2005 / γ spectrometer

MSR2005 / γ spectrometer

Annotate Zoom

Optical signal propagation of a central event within a BGO quarter coated by 50% reflecting material (upper right). The output efficiency was found to be of the 17.05 % (lower left). The rays out of the BGO quarter geometry are due to the coating penetration.

3D Lavout

Update Settings Print Window

- 🗆 ×

Exomars - Ionizing Radiation Detector (IRAS)

- Radiation data collected on the surface of Mars are required for projecting crew health risks and designing protective surface habitats
- Identifying and quantifying hazards to humans on Mars
- Assessing Martian surface habitability in search for putative Martian life
- Multiple measurements are preferred to characterize temporal and spatial variations
 - Solar Minimum and Solar Maximum
 - Atmospheric and Surface Variations
- Providing ground truth for Mars environment models

IRAS Returns:

- IRAS shall monitor the radiation field during cruise to Mars and on Mars
- IRAS shall separate between solar and galactic particle
- IRAS shall separate ionising particles from neutrons
- IRAS shall measure dose and LET spectra on the Martian surface.
- Measurements are used to benchmark models

AMDL supports the IRAS Electronics & S/W

- Produced a complete DM (EM representative) set of the electronics boards: Power I/F, DPU, Proximity boards
- Integrated most critical component i.e. the telescope front-end ASIC (50 um pitch) on Proximity PCB,

POWER I/F Board

• Fully Assembled, Fully Operated & Tested, Integrated with Control Unit board

DPU Board

• Fully Assembled, Integrated with Power board, Relative CU developing board fully operated, Operated with programmer

Proximity/AFE Board

• Fully Assembled including most demanding placement of ASIC